

VisiJet[®] Armor M2G-CL

Plástico transparente

Plástico de protótipo de engenharia rígido semelhante a ABS com acabamento translúcido transparente que proporciona boa resistência e rigidez com alto alongamento e tenacidade Projet MJP 2500

Com a força e a rigidez necessárias para simular muitos termoplásticos moldados por injeção, o VisiJet Armor M2G-CL também alcança grande alongamento e força de impacto do Izod entalhado. O VisiJet Armor M2G-CL é um material rígido adequado para os protótipos funcionais mecanicamente mais exigentes e geometricamente complexos. É opticamente claro e tem alta fidelidade de características, cantos e bordas afiados e acabamento de superfície liso.

Ele foi especificamente projetado para ser usado como um material protótipo de engenharia e tem a mesma precisão e superfícies lisas que os outros materiais MJP VisiJet. É apropriado para protótipos funcionais e montagens impressas e também pode produzir estruturas internas extremamente pequenas e complexas para microfluidos e visualização de fluxo.

RECURSOS

- Baixa força e rigidez, 55 a 65% de alongamento, 40 a 50 de resistência ao impacto de Izod entalhado
- Excelente para protótipos funcionais mecanicamente exigentes e geometricamente complexos
- · Pode criar estruturas internas extremamente pequenas e complexas
- Alta precisão e estanqueidade
- · USP biocompatível Classe VI

APLICAÇÕES

- Força/estipacidade e alongamento otimizados para aplicações de engenharia exigentes, incluindo peças moldadas por injeção e encaixes funcionais complexos
- · Protótipos funcionais translúcidos e algumas peças
- Prototipagem rápida de peças termoplásticas moldadas por injeção plástica
- Capacidade excepcional de ser perfurado, roscado e usinado e pode criar encaixes funcionais agressivos
- Montagens funcionais impressas e saliências de parafusos moldadas por injeção
- · Roscas e paredes finas impressas e funcionais
- · Visualização translúcida do fluxo e aplicações tingidas
- · Visores opticamente limpos em fixações
- Excelente para microfluídicos, fluídicos capilares e laboratórios em um chip

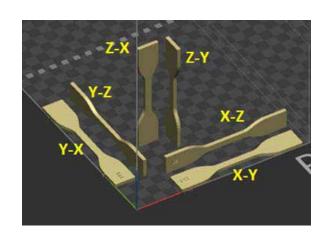
BENEFÍCIOS

- · Características finas de alta fidelidade, bordas afiadas e alta precisão
- · Acabamento de superfície excepcionalmente liso e consistente
- · Excelente clareza óptica
- Nenhuma inibição de cura de superfície de tintas ou silicones
- · A superfície lisa e a cura sem aderência permitem uma fácil moldagem ou pintura
- · Excelente para protótipos complexos de plástico de engenharia

Observação: Nem todos os produtos e materiais estão disponíveis em todos os países consulte seu representante de vendas local sobre a disponibilidade.

PROPRIEDADES DO MATERIAL

O conjunto completo de propriedades mecânicas é determinado de acordo com as normas ASTM e ISO, quando aplicável. Propriedades como inflamabilidade, propriedades dielétricas e absorção de água (24 horas) são fornecidas. Isso permite uma melhor compreensão da capacidade do material para auxiliar nas decisões de design em relação ao material. Todas as peças são condicionadas de acordo com os padrões recomendados pela ASTM durante um mínimo de 40 horas a 23 °C, 50% de RH.


As propriedades de materiais sólidos relatadas foram impressas ao longo do eixo vertical (orientação ZX). Conforme detalhado na seção Propriedades isotrópicas, as propriedades do material Figure 4 são relativamente uniformes nas orientações de impressão. As peças não precisam ser orientadas em uma direção específica para exibir essas propriedades.

		MATERIAL LÍQUI	.DO				
Cor	Limpar						
Volume da embalagem	Frasco de 1,5 kg						
		MATERIAL SÓLII	00				
MÉTRICO	MÉTODO ASTM	MÉTRICO	ENGLISH	MÉTODO ISO	MÉTRICO	ENGLISH	
	FÍSICO			FÍSICO			
Densidade sólida	ASTM D792	1,14 g/cm³	0,041 lb/pol ³	ISO 1183	1,14 g/cm ³	0,041 lb/pol ³	
Absorção de água (24 horas)	ASTM D570	0,11%	0,11%	ISO 62	0,11%	0,11%	
	MECÂNICO			MECÂNICO			
Máxima resistência à tração	ASTM D638 tipo IV	35 MPa	5.100 psi	ISO 527 -1/2	33 MPa	4.800 psi	
Resistência à tração no rendimento	ASTM D638 tipo IV	35 MPa	5.100 psi	ISO 527 -1/2	32,9 MPa	4.800 psi	
Módulo de elasticidade	ASTM D638 tipo IV	1.600 MPa	240 ksi	ISO 527 -1/2	1.300 MPa	195 ksi	
Alongamento na ruptura	ASTM D638 tipo IV	58%	58%	ISO 527 -1/2	60%	60%	
Alongamento no limite de escoamento	ASTM D638 tipo IV	4,1%	4,1%	ISO 527 -1/2	3,9%	3,9%	
Resistência flexível	ASTM D790	46 MPa	6.600 psi	ISO 178	43 MPa	6.200 psi	
Módulo de flexão	ASTM D790	1.300 MPa	190 ksi	ISO 178	2.000 MPa	284 ksi	
Impacto entalhado Izod	ASTM D256	49 J/m	0,9 ft-lb/pol	ISO 180-A	6,1 kJ/m²	2,9 ft-lb/pol ²	
Impacto não entalhado Izod	ASTM D4812	840 J/m	16 ft-lb/pol	ISO 180-U			
Dureza Shore	ASTM D2240	77D	77D	ISO 7619	77D	77D	
	TÉRMICO			TÉRMICO			
Tg (DMA E")	ASTM E1640 (E" Pico)	45 °C	112 °F	ISO 6721-1/11 (E" Peak)	45 °C	112 °F	
HDT 0,455 MPa/66 PSI	ASTM D648	46°C	114°F	ISO 75- 1/2 B	40 °C	106 °F	
HDT 1,82 MPa/264 PSI	ASTM D648	41 °C	106 °F	ISO 75-1/2 A	37 °C	99 °F	
CTE -20 a 70 C	ASTM E831	110 թբ	om/°C	ISO 11359-2	110 ppm/K	61 ppm/°F	
CTE 95 a 180 C	ASTM E831	183 pp	om/°C	ISO 11359-2	183 ppm/K	102 ppm/°F	
Taxa de inflamabilidade de UL		Н	В				
	ELÉTRICA				ELÉTRICA		
Resistência dielétrica (kV/mm) a 3,0 mm de espessura	ASTM D149	365					
Constante dielétrica a 1 MHz	ASTM D150	3,37					
Fator de dissipação a 1 MHz	ASTM D150	0,017					
Resistividade do volume (ohm - cm)	ASTM D257	5,98E+15					

PROPRIEDADES ISOTRÓPICAS

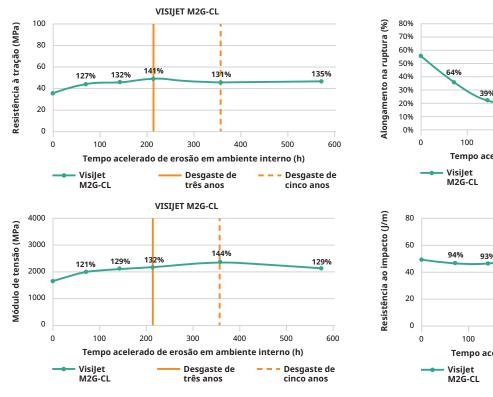
A tecnologia MultiJet Printing (MPJ) imprime peças que geralmente são isotrópicas em propriedades mecânicas, o que significa que as peças impressas ao longo dos eixos XYZ terão resultados semelhantes.

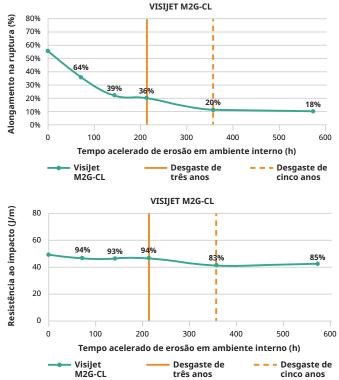

As peças não precisam ser orientadas para obter as mais altas propriedades mecânicas, melhorando ainda mais o grau de liberdade da orientação da peça para propriedades mecânicas.

MATERIAL SÓLIDO								
MÉTRICO	MÉTODO	MÉTRICO						
MECÂNICO								
		XY	XZ	YX	YZ	Z45	ZX	ZY
Máxima resistência à tração	ASTM D638 tipo IV	35 MPa	30 MPa	31 MPa	32 MPa	35 MPa	29 MPa	30 MPa
Resistência à tração no rendimento	ASTM D638 tipo IV	35 MPa	30 MPa	31 MPa	31 MPa	35 MPa	29 MPa	30 MPa
Módulo de elasticidade	ASTM D638 tipo IV	1.600 MPa	1.400 MPa	1.400 MPa	1.500 MPa	1.700 MPa	1.400 MPa	1.400 MPa
Alongamento na ruptura	ASTM D638 tipo IV	58%	63%	63%	65%	51%	38%	23%
Alongamento no limite de escoamento	ASTM D638 tipo IV	4,1%	4,1%	4,1%	3,9%	3,9%	4,1%	4%
Resistência flexível	ASTM D790	46 MPa	39 MPa	47 MPa	37 MPa	47 MPa	34 MPa	36 MPa
Módulo de flexão	ASTM D790	1.300 MPa	1.000 MPa	1.300 MPa	1.000 MPa	1.500 MPa	900 MPa	900 MPa
Impacto entalhado Izod	ASTM D256	49 J/m	46 J/m	48 J/m	48 J/m	54 J/m	42 J/m	44 J/m
Impacto não entalhado Izod	ASTM D4812	840 J/m	N/D	N/D	N/D	N/D	N/D	N/D
Dureza Shore	ASTM D2240	77D	74D	74D	73D	74D	74D	73D

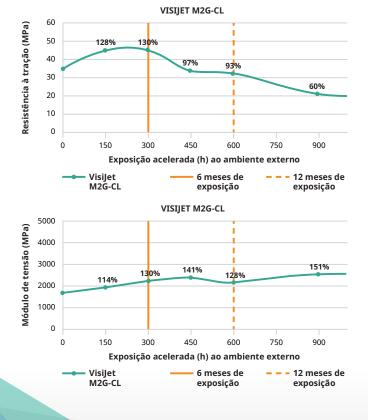
CURVA TENSÃO-DEFORMAÇÃO

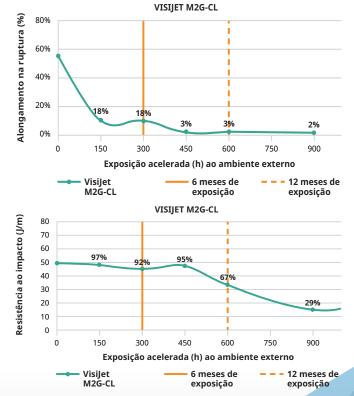
O gráfico representa a curva de estresse/deformação para o VisiJet M2E-BK de acordo com o teste ASTM D638.


ESTABILIDADE AMBIENTAL DE LONGO PRAZO


ESTABILIDADE EM AMBIENTES INTERNOS

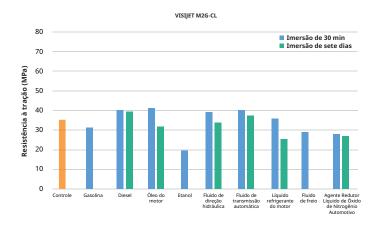
ESTABILIDADE EM AMBIENTES EXTERNOS

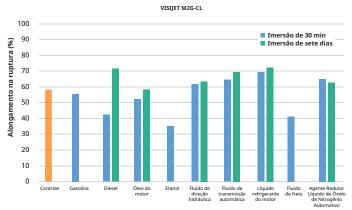

O VisiJet Armor M2G-CL foi projetado para proporcionar estabilidade ambiental UV e umidade de longo prazo. Isso significa que o material é testado quanto à capacidade de reter uma porcentagem elevada das propriedades mecânicas iniciais durante um período específico. Isso fornece condições reais de design a serem consideradas para a aplicação ou a peça. **O valor real dos dados está no eixo Y, e os pontos de dados são porcentagens do valor inicial.**

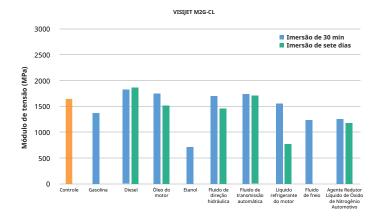

ESTABILIDADE INTERNA: testada pelo método padrão ASTM D4329.

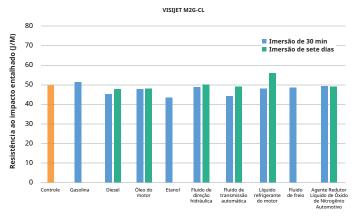
ESTABILIDADE EXTERNA: testada pelo método padrão ASTM G154.

COMPATIBILIDADE DE FLUIDOS AUTOMOTIVOS


A compatibilidade de um material com hidrocarbonetos e produtos químicos de limpeza é essencial para a aplicação de peças. As peças produzidas com o VisiJet Armor M2G-CL foram testadas quanto à compatibilidade de vedação e de contato com a superfície, de acordo com as condições de teste USCAR2. Os fluidos abaixo foram testados de duas maneiras diferentes, de acordo com as especificações.

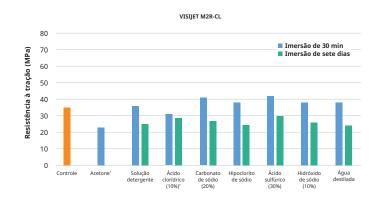

- Faça uma imersão por sete dias e, em seguida, pegue os dados das propriedades mecânicas para comparação.
- Faça uma imersão por 30 minutos, remova e pegue os dados das propriedades mecânicas para comparação em sete dias.

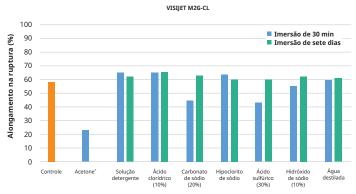

Os dados refletem o valor medido das propriedades durante esse período.

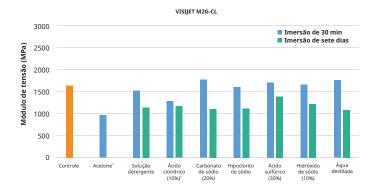

FLUIDOS AUTOMOTIVOS					
FLUIDO	ESPECIFICAÇÃO	TEMPERATURA DO TESTE EM °C			
Gasolina	ISO 1817, líquido C	23 ± 5			
Diesel	905 ISO 1817, óleo n° 3 + 10% p-xileno*	23 ± 5			
Óleo do motor	ISO 1817, óleo nº 2	50 ± 3			
Etanol	85% Etanol + 15% ISO 1817 líquido C*	23 ± 5			
Fluido de direção hidráulica	ISO 1917, óleo nº 3	50 ± 3			
Fluido de transmissão automática	Dexron VI (material específico norte-americano)	50 ± 3			
Líquido refrigerante do motor	50% etilenoglicol + 50% de água destilada*	50 ± 3			
Fluido de freio	SAE RM66xx (Use o fluido disponível mais recente para xx)	50 ± 3			
Agente Redutor Liquido de Óxido de Nitrogênio Automotivo (ARLA)	Certificação API pelo ISO 22241	23 ± 5			

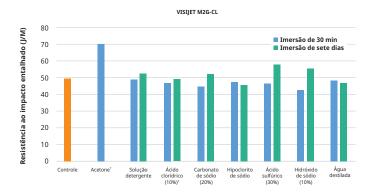
^{*} As soluções são determinadas como percentagem por volume

COMPATIBILIDADE QUÍMICA


A compatibilidade de um material com produtos químicos de limpeza é fundamental para a aplicação da peça. As peças produzidas com o VisiJet M2G-CL foram testadas quanto à compatibilidade de vedação e de contato com a superfície, de acordo com as condições de teste ASTM D543. Os fluidos abaixo foram testados de duas maneiras diferentes, de acordo com as especificações.


- Faça uma imersão por sete dias e, em seguida, pegue os dados das propriedades mecânicas para comparação.
- Faça uma imersão por 30 minutos, remova e pegue os dados das propriedades mecânicas para comparação em sete dias.


Os dados refletem o valor medido das propriedades durante esse período.


* Denota materiais que não passaram pela condição de imersão de sete dias.

COMPATIBILIDADE QUÍMICA
6.3.3 Acetona
6.3.12 Solução detergente, serviço pesado
6.3.23 Ácido clorídrico (10%)
6.3.38 Solução de carbonato de sódio (20%)
6.3.44 Solução de hipoclorito de sódio
6.3.46 Ácido sulfúrico (30%)
6.3.42 Solução de hidróxido de sódio (10%)
6.3.15 Água destilada

BIOCOMPATIBILIDADE APÓS O PROCESSAMENTO

Descrição do procedimento de limpeza biocompatível MJP. Mais detalhes estão disponíveis na seção Pós-processamento do Guia do Usuário:

- Retirar o suporte de cera em um forno
- Limpar com EZ Rinse-C ou óleo mineral
- Enxaguar com álcool etílico (etanol) com sonicação
- Segundo enxágue fresco de etanol de alta pureza com sonicação
- Secar a ar